1 module gfm.math.rational;
2 
3 import std.traits,
4        std..string;
5 
6 /**
7 
8   A rational number, always in reduced form. Supports basic arithmetic.
9 
10   Bugs: Remove this module once std.rational is here.
11 
12  */
13 struct Rational
14 {
15     public
16     {
17         long num;   /// Numerator.
18         long denom; /// Denominator.
19 
20         /// Construct a Rational from an integer.
21         @nogc this(long n) pure nothrow
22         {
23             opAssign!long(n);
24         }
25 
26         /// Construct a Rational from another Rational.
27         @nogc this(Rational f) pure nothrow
28         {
29             opAssign!Rational(f);
30         }
31 
32         /// Construct a Rational from numerator and denominator.
33         @nogc this(long numerator, long denominator) pure nothrow
34         {
35             num = numerator;
36             denom = denominator;
37             reduce();
38         }
39 
40         /// Converts to pretty string.
41         string toString() const
42         {
43             return format("%s/%s", num, denom);
44         }
45 
46         /// Cast to floating point.
47         @nogc T opCast(T)() pure const nothrow if (isFloatingPoint!T)
48         {
49             return cast(T)num / cast(T)denom;
50         }
51 
52         /// Assign with another Rational.
53         @nogc ref Rational opAssign(T)(T other) pure nothrow if (is(Unqual!T == Rational))
54         {
55             num = other.num;
56             denom = other.denom;
57             return this;
58         }
59 
60         /// Assign with an integer.
61         @nogc ref Rational opAssign(T)(T n) pure nothrow if (isIntegral!T)
62         {
63             num = n;
64             denom = 1;
65             return this;
66         }
67 
68         @nogc Rational opBinary(string op, T)(T o) pure const nothrow
69         {
70             Rational r = this;
71             Rational y = o;
72             return r.opOpAssign!(op)(y);
73         }
74 
75         @nogc ref Rational opOpAssign(string op, T)(T o) pure nothrow if (!is(Unqual!T == Rational))
76         {
77             const(self) o = y;
78             return opOpAssign!(op)(o);
79         }
80 
81         @nogc ref Rational opOpAssign(string op, T)(T o) pure nothrow if (is(Unqual!T == Rational))
82         {
83             static if (op == "+")
84             {
85                 num = num * o.denom + o.num * denom;
86                 denom = denom * o.denom;
87                 reduce();
88             }
89             else static if (op == "-")
90             {
91                 opOpAssign!"+"(-o);
92             }
93             else static if (op == "*")
94             {
95                 denom = denom * o.denom;
96                 num = num * o.num;
97                 reduce();
98             }
99             else static if (op == "/")
100             {
101                 opOpAssign!"*"(o.inverse());
102             }
103             else
104             {
105                 static assert(false, "unsupported operation '" ~ op ~ "'");
106             }
107             return this;
108         }
109 
110         // const unary operations
111         @nogc Rational opUnary(string op)() pure const nothrow if (op == "+" || op == "-")
112         {
113             static if (op == "-")
114             {
115                 Rational f = this;
116                 f.num = -f.num;
117                 return f;
118             }
119             else static if (op == "+")
120                 return this;
121         }
122 
123         // non-const unary operations
124         @nogc Rational opUnary(string op)() pure nothrow if (op=="++" || op=="--")
125         {
126             static if (op=="++")
127             {
128                 num += denom;
129             }
130             else static if (op=="--")
131             {
132                 num -= denom;
133             }
134             return this;
135         }
136 
137         @nogc bool opEquals(T)(T y) pure const nothrow if (!is(Unqual!T == Rational))
138         {
139             return this == Rational(y);
140         }
141 
142         @nogc bool opEquals(T)(T o) pure const nothrow if (is(Unqual!T == Rational))
143         {
144             // invariants ensures two equal Rationals have equal representations
145             return num == o.num && denom == o.denom;
146         }
147 
148         @nogc int opCmp(T)(T o) pure const if (!is(Unqual!T == Rational))
149         {
150             return opCmp(Rational(o));
151         }
152 
153         @nogc int opCmp(T)(T o) pure const nothrow if (is(Unqual!T == Rational))
154         {
155             assert(denom > 0);
156             assert(o.denom > 0);
157             long det = num * o.denom - denom * o.num;
158             if (det > 0)
159                 return 1;
160             else if (det < 0)
161                 return -1;
162             else
163                 return 0;
164         }
165 
166         /// Returns: Inverse of this rational number.
167         @nogc Rational inverse() pure const nothrow
168         {
169             return Rational(denom, num);
170         }
171     }
172 
173     private
174     {
175         // FIXME: be consistent with regards to sign
176         @nogc static long GCD(long a, long b) pure nothrow
177         {
178             if (b == 0)
179                 return a;
180             else
181                 return GCD(b, a % b);
182         }
183 
184         @nogc void reduce() pure nothrow
185         {
186             const(long) gcd = GCD(num, denom);
187             num /= gcd;
188             denom /= gcd;
189             if (denom < 0)
190             {
191                 num = -num;
192                 denom = -denom;
193             }
194         }
195     }
196 }
197 
198 unittest
199 {
200     Rational x = Rational(9, 3);
201     assert(x.num == 3);
202     assert(x.denom == 1);
203 
204     assert(x < 4);
205     assert(x > 2);
206     assert(x > Rational(8,3));
207     assert(x > Rational(-8,3));
208     assert(x == Rational(-27, -9));
209 
210     assert(Rational(-4, 7) + 2 == Rational(10, 7));
211     assert(Rational(-4, 7) == Rational(10, 7) - 2);
212 
213     assert(++Rational(3,7) == Rational(10,7));
214     assert(--Rational(3,7) == Rational(-4,7));
215     assert(+x == 3);
216     assert(-x == -3);
217 
218     Rational y = -4;
219     assert(y.num == -4);
220     assert(y.denom == 1);
221 
222     assert(Rational(2, 3) * Rational(15, 7) == Rational(10, 7));
223     assert(Rational(2, 3) == Rational(10, 7) / Rational(15, 7));
224 }