1 module gfm.math.rational; 2 3 import std.traits, 4 std..string; 5 6 /** 7 8 A rational number, always in reduced form. Supports basic arithmetic. 9 10 Bugs: Remove this module once std.rational is here. 11 12 */ 13 struct Rational 14 { 15 public 16 { 17 long num; /// Numerator. 18 long denom; /// Denominator. 19 20 /// Construct a Rational from an integer. 21 @nogc this(long n) pure nothrow 22 { 23 opAssign!long(n); 24 } 25 26 /// Construct a Rational from another Rational. 27 @nogc this(Rational f) pure nothrow 28 { 29 opAssign!Rational(f); 30 } 31 32 /// Construct a Rational from numerator and denominator. 33 @nogc this(long numerator, long denominator) pure nothrow 34 { 35 num = numerator; 36 denom = denominator; 37 reduce(); 38 } 39 40 /// Converts to pretty string. 41 string toString() const 42 { 43 return format("%s/%s", num, denom); 44 } 45 46 /// Cast to floating point. 47 @nogc T opCast(T)() pure const nothrow if (isFloatingPoint!T) 48 { 49 return cast(T)num / cast(T)denom; 50 } 51 52 /// Assign with another Rational. 53 @nogc ref Rational opAssign(T)(T other) pure nothrow if (is(Unqual!T == Rational)) 54 { 55 num = other.num; 56 denom = other.denom; 57 return this; 58 } 59 60 /// Assign with an integer. 61 @nogc ref Rational opAssign(T)(T n) pure nothrow if (isIntegral!T) 62 { 63 num = n; 64 denom = 1; 65 return this; 66 } 67 68 @nogc Rational opBinary(string op, T)(T o) pure const nothrow 69 { 70 Rational r = this; 71 Rational y = o; 72 return r.opOpAssign!(op)(y); 73 } 74 75 @nogc ref Rational opOpAssign(string op, T)(T o) pure nothrow if (!is(Unqual!T == Rational)) 76 { 77 const(self) o = y; 78 return opOpAssign!(op)(o); 79 } 80 81 @nogc ref Rational opOpAssign(string op, T)(T o) pure nothrow if (is(Unqual!T == Rational)) 82 { 83 static if (op == "+") 84 { 85 num = num * o.denom + o.num * denom; 86 denom = denom * o.denom; 87 reduce(); 88 } 89 else static if (op == "-") 90 { 91 opOpAssign!"+"(-o); 92 } 93 else static if (op == "*") 94 { 95 denom = denom * o.denom; 96 num = num * o.num; 97 reduce(); 98 } 99 else static if (op == "/") 100 { 101 opOpAssign!"*"(o.inverse()); 102 } 103 else 104 { 105 static assert(false, "unsupported operation '" ~ op ~ "'"); 106 } 107 return this; 108 } 109 110 // const unary operations 111 @nogc Rational opUnary(string op)() pure const nothrow if (op == "+" || op == "-") 112 { 113 static if (op == "-") 114 { 115 Rational f = this; 116 f.num = -f.num; 117 return f; 118 } 119 else static if (op == "+") 120 return this; 121 } 122 123 // non-const unary operations 124 @nogc Rational opUnary(string op)() pure nothrow if (op=="++" || op=="--") 125 { 126 static if (op=="++") 127 { 128 num += denom; 129 } 130 else static if (op=="--") 131 { 132 num -= denom; 133 } 134 return this; 135 } 136 137 @nogc bool opEquals(T)(T y) pure const nothrow if (!is(Unqual!T == Rational)) 138 { 139 return this == Rational(y); 140 } 141 142 @nogc bool opEquals(T)(T o) pure const nothrow if (is(Unqual!T == Rational)) 143 { 144 // invariants ensures two equal Rationals have equal representations 145 return num == o.num && denom == o.denom; 146 } 147 148 @nogc int opCmp(T)(T o) pure const if (!is(Unqual!T == Rational)) 149 { 150 return opCmp(Rational(o)); 151 } 152 153 @nogc int opCmp(T)(T o) pure const nothrow if (is(Unqual!T == Rational)) 154 { 155 assert(denom > 0); 156 assert(o.denom > 0); 157 long det = num * o.denom - denom * o.num; 158 if (det > 0) 159 return 1; 160 else if (det < 0) 161 return -1; 162 else 163 return 0; 164 } 165 166 /// Returns: Inverse of this rational number. 167 @nogc Rational inverse() pure const nothrow 168 { 169 return Rational(denom, num); 170 } 171 } 172 173 private 174 { 175 // FIXME: be consistent with regards to sign 176 @nogc static long GCD(long a, long b) pure nothrow 177 { 178 if (b == 0) 179 return a; 180 else 181 return GCD(b, a % b); 182 } 183 184 @nogc void reduce() pure nothrow 185 { 186 const(long) gcd = GCD(num, denom); 187 num /= gcd; 188 denom /= gcd; 189 if (denom < 0) 190 { 191 num = -num; 192 denom = -denom; 193 } 194 } 195 } 196 } 197 198 unittest 199 { 200 Rational x = Rational(9, 3); 201 assert(x.num == 3); 202 assert(x.denom == 1); 203 204 assert(x < 4); 205 assert(x > 2); 206 assert(x > Rational(8,3)); 207 assert(x > Rational(-8,3)); 208 assert(x == Rational(-27, -9)); 209 210 assert(Rational(-4, 7) + 2 == Rational(10, 7)); 211 assert(Rational(-4, 7) == Rational(10, 7) - 2); 212 213 assert(++Rational(3,7) == Rational(10,7)); 214 assert(--Rational(3,7) == Rational(-4,7)); 215 assert(+x == 3); 216 assert(-x == -3); 217 218 Rational y = -4; 219 assert(y.num == -4); 220 assert(y.denom == 1); 221 222 assert(Rational(2, 3) * Rational(15, 7) == Rational(10, 7)); 223 assert(Rational(2, 3) == Rational(10, 7) / Rational(15, 7)); 224 }