1 /** 2 This module implements some abstract geometric shapes: 3 $(UL 4 $(LI Line segments.) 5 $(LI Triangle.) 6 $(LI Circles/spheres.) 7 $(LI Rays) 8 $(LI Planes) 9 $(LI Frustum) 10 ) 11 */ 12 module gfm.math.shapes; 13 14 import std.math, 15 std.traits; 16 17 import gfm.math.vector, 18 gfm.math.box; 19 20 /// A Segment is 2 points. 21 /// When considered like a vector, it represents the arrow from a to b. 22 struct Segment(T, int N) 23 { 24 public 25 { 26 alias Vector!(T, N) point_t; 27 point_t a, b; 28 29 static if (N == 3 && isFloatingPoint!T) 30 { 31 /// Segment vs plane intersection. 32 /// See_also: "Geometry for Computer Graphics: Formulae, Examples 33 /// and Proofs", Vince (2005), p. 62 34 /// Returns: $(D true) if the segment crosses the plane exactly 35 /// once, or $(D false) if the segment is parallel to or does 36 /// not reach the plane 37 /// Params: 38 /// intersection = set to the point of intersection 39 /// progress = set to the point's progress between endpoints 40 /// $(D a) at 0.0 and $(D b) at 1.0, or T.infinity 41 /// if parallel to the plane 42 @nogc @safe bool intersect(Plane!T plane, out point_t intersection, out T progress) pure const nothrow 43 { 44 // direction vector from a to b 45 point_t dir = b-a; 46 47 // dot product will be 0 if angle to plane is 0 48 T dp = dot(plane.n, dir); 49 if (abs(dp) < T.epsilon) 50 { 51 progress = T.infinity; 52 return false; // parallel to plane 53 } 54 55 // relative distance along segment where intersection happens 56 progress = -(dot(plane.n, a) - plane.d) / dp; 57 58 intersection = progress*dir + a; 59 return progress >= 0 && progress <= 1; 60 } 61 } 62 } 63 } 64 65 alias Segment!(float, 2) seg2f; /// 2D float segment. 66 alias Segment!(float, 3) seg3f; /// 3D float segment. 67 alias Segment!(double, 2) seg2d; /// 2D double segment. 68 alias Segment!(double, 3) seg3d; /// 3D double segment. 69 alias Segment!(int, 2) seg2i; /// 2D integer segment. 70 alias Segment!(int, 3) seg3i; /// 3D integer segment. 71 72 /// A Triangle is 3 points. 73 struct Triangle(T, int N) 74 { 75 public 76 { 77 alias Vector!(T, N) point_t; 78 point_t a, b, c; 79 80 static if (N == 2) 81 { 82 /// Returns: Area of a 2D triangle. 83 @nogc T area() pure const nothrow 84 { 85 return abs(signedArea()); 86 } 87 88 /// Returns: Signed area of a 2D triangle. 89 @nogc T signedArea() pure const nothrow 90 { 91 return ((b.x * a.y - a.x * b.y) 92 + (c.x * b.y - b.x * c.y) 93 + (a.x * c.y - c.x * a.y)) / 2; 94 } 95 } 96 97 static if (N == 3 && isFloatingPoint!T) 98 { 99 /// Returns: Triangle normal. 100 @nogc Vector!(T, 3) computeNormal() pure const nothrow 101 { 102 return cross(b - a, c - a).normalized(); 103 } 104 } 105 } 106 } 107 108 alias Triangle!(float, 2) triangle2f; /// 2D float triangle. 109 alias Triangle!(float, 3) triangle3f; /// 3D float triangle. 110 alias Triangle!(double, 2) triangle2d; /// 2D double triangle. 111 alias Triangle!(double, 3) triangle3d; /// 3D double triangle. 112 113 /// A Sphere is a point + a radius. 114 struct Sphere(T, int N) 115 { 116 public nothrow 117 { 118 alias Vector!(T, N) point_t; 119 point_t center; 120 T radius; 121 122 /// Creates a sphere from a point and a radius. 123 @nogc this(in point_t center_, T radius_) pure nothrow 124 { 125 center = center_; 126 radius = radius_; 127 } 128 129 /// Sphere contains point test. 130 /// Returns: true if the point is inside the sphere. 131 @nogc bool contains(in Sphere s) pure const nothrow 132 { 133 if (s.radius > radius) 134 return false; 135 136 T innerRadius = radius - s.radius; 137 return squaredDistanceTo(s.center) < innerRadius * innerRadius; 138 } 139 140 /// Sphere vs point Euclidean distance squared. 141 @nogc T squaredDistanceTo(point_t p) pure const nothrow 142 { 143 return center.squaredDistanceTo(p); 144 } 145 146 /// Sphere vs sphere intersection. 147 /// Returns: true if the spheres intersect. 148 @nogc bool intersects(Sphere s) pure const nothrow 149 { 150 T outerRadius = radius + s.radius; 151 return squaredDistanceTo(s.center) < outerRadius * outerRadius; 152 } 153 154 static if (isFloatingPoint!T) 155 { 156 /// Sphere vs point Euclidean distance. 157 @nogc T distanceTo(point_t p) pure const nothrow 158 { 159 return center.distanceTo(p); 160 } 161 162 static if(N == 2) 163 { 164 /// Returns: Circle area. 165 @nogc T area() pure const nothrow 166 { 167 return PI * (radius * radius); 168 } 169 } 170 } 171 } 172 } 173 174 alias Sphere!(float, 2) sphere2f; /// 2D float sphere (ie. a circle). 175 alias Sphere!(float, 3) sphere3f; /// 3D float sphere. 176 alias Sphere!(double, 2) sphere2d; /// 2D double sphere (ie. a circle). 177 alias Sphere!(double, 3) sphere3d; /// 3D double sphere (ie. a circle). 178 179 180 /// A Ray ir a point + a direction. 181 struct Ray(T, int N) 182 { 183 nothrow: 184 public 185 { 186 alias Vector!(T, N) point_t; 187 point_t orig; 188 point_t dir; 189 190 /// Returns: A point further along the ray direction. 191 @nogc point_t progress(T t) pure const nothrow 192 { 193 return orig + dir * t; 194 } 195 196 static if (N == 3 && isFloatingPoint!T) 197 { 198 /// Ray vs triangle intersection. 199 /// See_also: "Fast, Minimum Storage Ray/Triangle intersection", Mommer & Trumbore (1997) 200 /// Returns: Barycentric coordinates, the intersection point is at $(D (1 - u - v) * A + u * B + v * C). 201 @nogc bool intersect(Triangle!(T, 3) triangle, out T t, out T u, out T v) pure const nothrow 202 { 203 point_t edge1 = triangle.b - triangle.a; 204 point_t edge2 = triangle.c - triangle.a; 205 point_t pvec = cross(dir, edge2); 206 T det = dot(edge1, pvec); 207 if (abs(det) < T.epsilon) 208 return false; // no intersection 209 T invDet = 1 / det; 210 211 // calculate distance from triangle.a to ray origin 212 point_t tvec = orig - triangle.a; 213 214 // calculate U parameter and test bounds 215 u = dot(tvec, pvec) * invDet; 216 if (u < 0 || u > 1) 217 return false; 218 219 // prepare to test V parameter 220 point_t qvec = cross(tvec, edge1); 221 222 // calculate V parameter and test bounds 223 v = dot(dir, qvec) * invDet; 224 if (v < 0.0 || u + v > 1.0) 225 return false; 226 227 // calculate t, ray intersects triangle 228 t = dot(edge2, qvec) * invDet; 229 return true; 230 } 231 232 /// Ray vs plane intersection. 233 /// See_also: "Geometry for Computer Graphics: Formulae, Examples 234 /// and Proofs", Vince (2005), p. 62 235 /// Returns: $(D true) if the ray crosses the plane exactly once, 236 /// or $(D false) if the ray is parallel to or points away from 237 /// the plane 238 /// Params: 239 /// intersection = set to the point of intersection 240 /// distance = set to the point's distance along the ray, or 241 /// T.infinity if parallel to the plane 242 @nogc @safe bool intersect(Plane!T plane, out point_t intersection, out T distance) pure const nothrow 243 { 244 // dot product will be 0 if angle to plane is 0 245 T dp = dot(plane.n, dir); 246 if (abs(dp) < T.epsilon) 247 { 248 distance = T.infinity; 249 return false; // parallel to plane 250 } 251 252 // distance along ray where intersection happens 253 distance = -(dot(plane.n, orig) - plane.d) / dp; 254 255 intersection = distance*dir + orig; 256 return distance >= 0; 257 } 258 } 259 } 260 } 261 262 alias Ray!(float, 2) ray2f; /// 2D float ray. 263 alias Ray!(float, 3) ray3f; /// 3D float ray. 264 alias Ray!(double, 2) ray2d; /// 2D double ray. 265 alias Ray!(double, 3) ray3d; /// 3D double ray. 266 267 268 /// 3D plane. 269 /// See_also: Flipcode article by Nate Miller $(WEB www.flipcode.com/archives/Plane_Class.shtml). 270 struct Plane(T) if (isFloatingPoint!T) 271 { 272 public 273 { 274 vec3!T n; /// Normal (always stored normalized). 275 T d; 276 277 /// Create from four coordinates. 278 @nogc this(vec4!T abcd) pure nothrow 279 { 280 n = vec3!T(abcd.x, abcd.y, abcd.z).normalized(); 281 d = abcd.w; 282 } 283 284 /// Create from a point and a normal. 285 @nogc this(vec3!T origin, vec3!T normal) pure nothrow 286 { 287 n = normal.normalized(); 288 d = -dot(origin, n); 289 } 290 291 /// Create from 3 non-aligned points. 292 @nogc this(vec3!T A, vec3!T B, vec3!T C) pure nothrow 293 { 294 this(C, cross(B - A, C - A)); 295 } 296 297 /// Assign a plane with another plane. 298 @nogc ref Plane opAssign(Plane other) pure nothrow 299 { 300 n = other.n; 301 d = other.d; 302 return this; 303 } 304 305 /// Returns: signed distance between a point and the plane. 306 @nogc T signedDistanceTo(vec3!T point) pure const nothrow 307 { 308 return dot(n, point) + d; 309 } 310 311 /// Returns: absolute distance between a point and the plane. 312 @nogc T distanceTo(vec3!T point) pure const nothrow 313 { 314 return abs(signedDistanceTo(point)); 315 } 316 317 /// Returns: true if the point is in front of the plane. 318 @nogc bool isFront(vec3!T point) pure const nothrow 319 { 320 return signedDistanceTo(point) >= 0; 321 } 322 323 /// Returns: true if the point is in the back of the plane. 324 @nogc bool isBack(vec3!T point) pure const nothrow 325 { 326 return signedDistanceTo(point) < 0; 327 } 328 329 /// Returns: true if the point is on the plane, with a given epsilon. 330 @nogc bool isOn(vec3!T point, T epsilon) pure const nothrow 331 { 332 T sd = signedDistanceTo(point); 333 return (-epsilon < sd) && (sd < epsilon); 334 } 335 } 336 } 337 338 alias Plane!float planef; /// 3D float plane. 339 alias Plane!double planed; /// 3D double plane. 340 341 unittest 342 { 343 auto p = planed(vec4d(1.0, 2.0, 3.0, 4.0)); 344 auto p2 = planed(vec3d(1.0, 0.0, 0.0), 345 vec3d(0.0, 1.0, 0.0), 346 vec3d(0.0, 0.0, 1.0)); 347 348 assert(p2.isOn(vec3d(1.0, 0.0, 0.0), 1e-7)); 349 assert(p2.isFront(vec3d(1.0, 1.0, 1.0))); 350 assert(p2.isBack(vec3d(0.0, 0.0, 0.0))); 351 } 352 353 /// Plane intersection tests 354 @nogc @safe pure nothrow unittest 355 { 356 void testR(planed p, ray3d r, bool shouldIntersect, double expectedDistance, vec3d expectedPoint = vec3d.init) 357 { 358 vec3d point; 359 double distance; 360 assert(r.intersect(p, point, distance) == shouldIntersect); 361 assert(approxEqual(distance, expectedDistance)); 362 if (shouldIntersect) 363 assert(approxEqual(point.v[], expectedPoint.v[])); 364 } 365 // ray facing plane 366 testR(planed(vec4d(1.0, 0.0, 0.0, 1.0)), ray3d(vec3d(2.0, 3.0, 4.0), vec3d(-1.0, 0.0, 0.0)), 367 true, 1.0, vec3d(1.0, 3.0, 4.0)); 368 testR(planed(vec4d(1.0, 1.0, 1.0, -sqrt(3.0))), ray3d(vec3d(1.0, 1.0, 1.0), vec3d(-1.0, -1.0, -1.0).normalized()), 369 true, 2.0*sqrt(3.0), vec3d(-1.0, -1.0, -1.0)); 370 // ray facing away 371 testR(planed(vec4d(1.0, 0.0, 0.0, 1.0)), ray3d(vec3d(2.0, 3.0, 4.0), vec3d(1.0, 0.0, 0.0)), 372 false, -1.0); 373 testR(planed(vec4d(1.0, 0.0, 0.0, 5.0)), ray3d(vec3d(2.0, 3.0, 4.0), vec3d(-1.0, 0.0, 0.0)), 374 false, -3.0); 375 // ray parallel 376 testR(planed(vec4d(0.0, 0.0, 1.0, 1.0)), ray3d(vec3d(1.0, 2.0, 3.0), vec3d(1.0, 0.0, 0.0)), 377 false, double.infinity); 378 379 void testS(planed p, seg3d s, bool shouldIntersect, double expectedProgress, vec3d expectedPoint = vec3d.init) 380 { 381 vec3d point; 382 double progress; 383 assert(s.intersect(p, point, progress) == shouldIntersect); 384 assert(approxEqual(progress, expectedProgress)); 385 if (shouldIntersect) 386 assert(approxEqual(point.v[], expectedPoint.v[])); 387 } 388 // segment crossing plane 389 testS(planed(vec4d(1.0, 0.0, 0.0, 2.0)), seg3d(vec3d(1.0, 2.0, 3.0), vec3d(3.0, 4.0, 5.0)), 390 true, 0.5, vec3d(2.0, 3.0, 4.0)); 391 // segment too short 392 testS(planed(vec4d(1.0, 0.0, 0.0, 0.0)), seg3d(vec3d(1.0, 2.0, 3.0), vec3d(3.0, 4.0, 5.0)), 393 false, -0.5); 394 } 395 396 397 /// 3D frustum. 398 /// See_also: Flipcode article by Dion Picco $(WEB www.flipcode.com/archives/Frustum_Culling.shtml). 399 /// Bugs: verify proper signedness of half-spaces 400 struct Frustum(T) if (isFloatingPoint!T) 401 { 402 public 403 { 404 enum int LEFT = 0, 405 RIGHT = 1, 406 TOP = 2, 407 BOTTOM = 3, 408 NEAR = 4, 409 FAR = 5; 410 411 Plane!T[6] planes; 412 413 /// Create a frustum from 6 planes. 414 @nogc this(Plane!T left, Plane!T right, Plane!T top, Plane!T bottom, Plane!T near, Plane!T far) pure nothrow 415 { 416 planes[LEFT] = left; 417 planes[RIGHT] = right; 418 planes[TOP] = top; 419 planes[BOTTOM] = bottom; 420 planes[NEAR] = near; 421 planes[FAR] = far; 422 } 423 424 enum : int 425 { 426 OUTSIDE, /// object is outside the frustum 427 INTERSECT, /// object intersects with the frustum 428 INSIDE /// object is inside the frustum 429 } 430 431 /// Point vs frustum intersection. 432 @nogc bool contains(vec3!T point) pure const nothrow 433 { 434 for(int i = 0; i < 6; ++i) 435 { 436 T distance = planes[i].signedDistanceTo(point); 437 438 if(distance < 0) 439 return false; 440 } 441 return true; 442 } 443 444 /// Sphere vs frustum intersection. 445 /// Returns: Frustum.OUTSIDE, Frustum.INTERSECT or Frustum.INSIDE. 446 @nogc int contains(Sphere!(T, 3) sphere) pure const nothrow 447 { 448 // calculate our distances to each of the planes 449 for(int i = 0; i < 6; ++i) 450 { 451 // find the distance to this plane 452 T distance = planes[i].signedDistanceTo(sphere.center); 453 454 if(distance < -sphere.radius) 455 return OUTSIDE; 456 457 else if (distance < sphere.radius) 458 return INTERSECT; 459 } 460 461 // otherwise we are fully in view 462 return INSIDE; 463 } 464 465 /// AABB vs frustum intersection. 466 /// Returns: Frustum.OUTSIDE, Frustum.INTERSECT or Frustum.INSIDE. 467 @nogc int contains(box3!T box) pure const nothrow 468 { 469 vec3!T[8] corners; 470 int totalIn = 0; 471 472 for (int i = 0; i < 2; ++i) 473 for (int j = 0; j < 2; ++j) 474 for (int k = 0; k < 2; ++k) 475 { 476 auto x = i == 0 ? box.min.x : box.max.x; 477 auto y = i == 0 ? box.min.y : box.max.y; 478 auto z = i == 0 ? box.min.z : box.max.z; 479 corners[i*4 + j*2 + k] = vec3!T(x, y, z); 480 } 481 482 // test all 8 corners against the 6 sides 483 // if all points are behind 1 specific plane, we are out 484 // if we are in with all points, then we are fully in 485 for(int p = 0; p < 6; ++p) 486 { 487 int inCount = 8; 488 int ptIn = 1; 489 490 for(int i = 0; i < 8; ++i) 491 { 492 // test this point against the planes 493 if (planes[p].isBack(corners[i])) 494 { 495 ptIn = 0; 496 --inCount; 497 } 498 } 499 500 // were all the points outside of plane p? 501 if (inCount == 0) 502 return OUTSIDE; 503 504 // check if they were all on the right side of the plane 505 totalIn += ptIn; 506 } 507 508 // so if totalIn is 6, then all are inside the view 509 if(totalIn == 6) 510 return INSIDE; 511 512 // we must be partly in then otherwise 513 return INTERSECT; 514 } 515 516 } 517 } 518 519 unittest 520 { 521 seg2f se; 522 triangle3f tr; 523 Frustum!double frust; 524 planed pl; 525 } 526 527 /// True if `T` is a kind of Segment 528 enum isSegment(T) = is(T : Segment!U, U...); 529 530 /// True if `T` is a kind of Triangle 531 enum isTriangle(T) = is(T : Triangle!U, U...); 532 533 /// True if `T` is a kind of Sphere 534 enum isSphere(T) = is(T : Sphere!U, U...); 535 536 /// True if `T` is a kind of Ray 537 enum isRay(T) = is(T : Ray!U, U...); 538 539 /// True if `T` is a kind of Plane 540 enum isPlane(T) = is(T : Plane!U, U); 541 542 /// True if `T` is a kind of Frustum 543 enum isFrustum(T) = is(T : Frustum!U, U); 544 545 /// True if `T` is a kind of 2 dimensional Segment 546 enum isSegment2D(T) = is(T : Segment!(U, 2), U); 547 548 /// True if `T` is a kind of 2 dimensional Triangle 549 enum isTriangle2D(T) = is(T : Triangle!(U, 2), U); 550 551 /// True if `T` is a kind of 2 dimensional Sphere 552 enum isSphere2D(T) = is(T : Sphere!(U, 2), U); 553 554 /// True if `T` is a kind of 2 dimensional Ray 555 enum isRay2D(T) = is(T : Ray!(U, 2), U); 556 557 /// True if `T` is a kind of 3 dimensional Segment 558 enum isSegment3D(T) = is(T : Segment!(U, 3), U); 559 560 /// True if `T` is a kind of 3 dimensional Triangle 561 enum isTriangle3D(T) = is(T : Triangle!(U, 3), U); 562 563 /// True if `T` is a kind of 3 dimensional Sphere 564 enum isSphere3D(T) = is(T : Sphere!(U, 3), U); 565 566 /// True if `T` is a kind of 3 dimensional Ray 567 enum isRay3D(T) = is(T : Ray!(U, 3), U); 568 569 unittest 570 { 571 enum ShapeType 572 { 573 segment, 574 triangle, 575 sphere, 576 ray, 577 plane, 578 frustum 579 } 580 581 void test(T, ShapeType type, int dim)() 582 { 583 with (ShapeType) 584 { 585 static assert(isSegment!T == (type == segment )); 586 static assert(isTriangle!T == (type == triangle)); 587 static assert(isSphere!T == (type == sphere )); 588 static assert(isRay!T == (type == ray )); 589 static assert(isPlane!T == (type == plane )); 590 static assert(isFrustum!T == (type == frustum )); 591 592 static assert(isSegment2D!T == (type == segment && dim == 2)); 593 static assert(isTriangle2D!T == (type == triangle && dim == 2)); 594 static assert(isSphere2D!T == (type == sphere && dim == 2)); 595 static assert(isRay2D!T == (type == ray && dim == 2)); 596 597 static assert(isSegment3D!T == (type == segment && dim == 3)); 598 static assert(isTriangle3D!T == (type == triangle && dim == 3)); 599 static assert(isSphere3D!T == (type == sphere && dim == 3)); 600 static assert(isRay3D!T == (type == ray && dim == 3)); 601 } 602 } 603 604 with (ShapeType) 605 { 606 // test case type #dimensions 607 test!(seg2f , segment , 2); 608 test!(seg3d , segment , 3); 609 test!(triangle2d , triangle, 2); 610 test!(triangle3f , triangle, 3); 611 test!(sphere2d , sphere , 2); 612 test!(Sphere!(uint, 3), sphere , 3); 613 test!(ray2f , ray , 2); 614 test!(Ray!(real, 3) , ray , 3); 615 test!(planed , plane , 0); // ignore dimension (always 3D) 616 test!(Plane!float , plane , 0); 617 test!(Frustum!double , frustum , 0); 618 } 619 } 620 621 /// Get the numeric type used to measure a shape's dimensions. 622 alias DimensionType(T : Segment!U, U...) = U[0]; 623 /// ditto 624 alias DimensionType(T : Triangle!U, U...) = U[0]; 625 /// ditto 626 alias DimensionType(T : Sphere!U, U...) = U[0]; 627 /// ditto 628 alias DimensionType(T : Ray!U, U...) = U[0]; 629 /// ditto 630 alias DimensionType(T : Plane!U, U) = U; 631 /// ditto 632 alias DimensionType(T : Frustum!U, U) = U; 633 634 /// 635 unittest 636 { 637 static assert(is(DimensionType!seg2i == int)); 638 static assert(is(DimensionType!triangle3d == double)); 639 static assert(is(DimensionType!sphere2d == double)); 640 static assert(is(DimensionType!ray3f == float)); 641 static assert(is(DimensionType!planed == double)); 642 static assert(is(DimensionType!(Frustum!real) == real)); 643 }